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Abstract – We present our recent work on structured arrays and clusters of scatterers in
elasticity to design elastic platonic metamaterials that utilise resonant phenomena. Numerical
simulations based on a Green’s function approach allows us to solve for the multiple scattering
problem for resonators atop a thin elastic plate and to find eigenmodes of those open structures,
the so-called quasi-normal modes. We derive a modal expansion of the displacement field that
gives a valuable insight on the resonant interaction of external forces with the system’s eigen-
modes and that provides a reduced-order model capable of efficiently computing physical quan-
tities of interest such as the local density of states. Potential applications of the elastic devices
include elastic delay lines and passive energy harvesters.

I. INTRODUCTION

Resonant interaction is a central concept in any system supporting wave propagation. For open structures where
the resonating elements couple to an open, infinite background medium, the system becomes non-Hermitian and
eigenfrequencies ωn are generally complex, even in the absence of dissipation. The associated eigenmodes have
been referred to using various terminology in the literature: quasi-normal modes (QNMs), resonant states, leaky
modes, scattering resonances, or quasi bound states in the continuum for the particular case of resonances with
high quality factor Qn = −Reωn/2Imωn. An unintuitive feature of those QNMs is an exponential growth in
the far field because of the imaginary part of the resonance frequency, a consequence of the non-hermiticity of the
spectral problem. QNMs have been extensively studied in photonics for gaining physical insights on light-matter
interaction and as a reduced-order model for an efficient approximation of the solution to a forced problem by
expanding the field on a few modes. For elastic waves, fewer studies have been reported which include thin plates
with clusters or rigid pins [1], ring arrays of masses [2] or mass-spring resonators [3] and full-elasticity in two-
dimensions [4].
In this contribution we highlight how eigen-analysis of open systems in elastic structures can provide a valuable
insight on the resonant properties of those systems. Based on the Green’s function approach, we solve for the
resulting nonlinear eigenvalue problem with an iterative method to find the complex resonant frequencies for finite
clusters of scatterers (pins, masses or mass-spring resonators) placed on an elastic plate described by Kirchhoff-
Love theory. We develop a quasi-normal mode expansion which reveals the contribution of each mode to the
scattering properties of the system and turns out to be a computationally efficient tool to calculate the response of
the structure to an arbitrary excitation when the forcing parameters (frequency, plane wave incident angle, point
source position) vary.

II. THEORY

Let us consider an elastic plate of thickness h, mass density ρ, Young’s modulus E and Poisson ratio ν, loaded
with a finite distribution of N mass-spring resonators with force constant kRα and mass mRα, located at positions
Rα. According to Kirchhoff-Love theory, the governing equation of motion for the plate’s displacement W in
time-harmonic regime exp(−iωt) is given by [5]:

P(ω)W (r) =
(
∇4 − k4 −R(ω)

)
W (r) = 0, (1)
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where we introduced the biharmonic operator∇4, the wave number k satisfying k4 = ω2ρh/D, the plate bending
stiffness D = Eh3/12

(
1− ν2

)
and the operator R(ω) defined as R(ω)W (r) =

∑
α tα(ω)W (Rα)δ(r −Rα).

The quantities tα(ω) = mRα
D

ω2
Rαω

2

ω2
Rα−ω2 are the resonators’ strength or impedance, with ωRα =

√
kRα/mRα the

resonant frequencies.
Solving equation (1) can be done by first finding the Green’s function of the plate without resonators satisfying(
∇4 − k4

)
G(r) = δ(r), whose solution is known explicitly as G(r) = i

8k2 [H0(kr)−H0(ikr)] , where H0 is
the zeroth-order Hankel function of the first kind.
For an incident excitationW i(r), the multiple scattering problem is solved by setting up a system of self-consistent
equations, with the solution for the displacement W (r) given by:

W (r) = W i(r) +
∑
α

φαG (r −Rα) (2)

with φα = Tα(ω)ψe (Rα), the so-called ”external” field ψe (Rα) representing the incident field on scatterer α,
and the coefficients Tα = tα

1−itα/(8k2) . One finally obtains the system of equations in matrix form MΦ = Ψi, with
the elements of the matrix given by Mαβ = δαβt

−1
α −G (Rα −Rβ) and the right-hand side is a vector containing

the values of the incident field at the resonators’ positions Ψi
α = W i(Rα).

The nonlinear eigenvalue problem consists in seeking solutions of the governing equations without excitation,
hence setting W i = 0, one needs to find the eigenfrequencies ωn and eigenvectors Φn satisfying M(ωn)Φn = 0.
There are various methods to solve this, which can be broadly separated into two families, contour integral tech-
niques [6] or iterative methods [7]. Each type has its advantage and inconvenient, contour integral methods can
compute all singularities within a given region of the complex plane but can be slow because they require comput-
ing integrals on a closed path accurately, whereas iterative methods are faster but require an initial guess. Here we
use a variant of the latter, namely Newton’s method with a generalized Rayleigh quotient iteration [7] to find the
eigenvalues and eigenvectors.

Next we derive a modal expansion, according to Keldyšh theorem [8]:

M−1(ω) =
∑
n

1

ω − ωn
ΦnΦn

Φn·M ′(ωn)Φn
+ h(ω) (3)

with h a matrix valued analytic function representing the non-resonant background which is zero if M is a strictly
proper rational function [6]. However, this expansion is not unique as the system is overcomplete. Neglecting the
non-resonant term and following [9], we take a generalisation of the previous theorem and write the expansion for
the solution:

Φ =
∑
n

f(ωn)

f(ω)

1

ω − ωn
Φn·Ψi

Φn·M ′(ωn)Φn
Φn =

∑
n

bn(ω)Φn (4)

In the case of polynomial or rational eigenproblems, it has been shown in [9] that f is polynomial of maximum
degree depending on the dispersive properties. The situation is more complicated here as we use a Green’s function
formalism involving transcendental functions. For the cases tested numerically it seems that f = 1/k3 works best,
and we will use this in the examples.

III. EXAMPLE

The tools provided by the eigen-analysis enables rapid exploration of parametric studies involving intricate ge-
ometries of scatterers. We are particularly interested in graded line arrays of resonators, due to the intriguing prop-
erties arising from the excitation of the eigenmodes. By grading the array, we induce rainbow trapping, wherein
the constituent frequencies of a source spatially separate, resulting in a band-gap cut-off frequency distributed at
various positions along the array. This phenomenon, well-established in optics, has also been observed in acous-
tics, water waves and elasticity [10]. The chosen configuration consists of 10 resonators separated by a distance a,
with resonant frequencies ωRα linearly distributed between ωp and 0.8ωp, (ω2

p = D/ρha2 being the fundamental
frequency of the plate), with stiffnesses kRα = kp = ω2

pmp (with mp = ρha2) and masses mRα = kp/ω
2
Rα,
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Fig. 1: Eigenmodes and modal expansion for a graded line array of resonators. (a): QNMs displacement field cor-
responding to eigenfrequencies with the lowest imaginary part. (b): Normalised displacement field norm excited
and evaluated at the leftmost resonator computed with the scattering problem and modal expansion as a function
of frequency.

the eigenmodes are displayed on Fig.(1a). Their excitation by a point source gives rise to a resonant interaction
with multiple spectrally separated peaks in the total field (solid blue line on Fig. (1b)). The reconstruction with 16
QNMs allows a fast evaluation of the displacement field as a function of excitation frequency that is in excellent
agreement with multiple scattering computations (dashed red line on Fig. (1b)).
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